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Abstract: Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists 

rely on computational methods to analyze and integrate large data sets, while several computational methods 

were inspired by the high level design principles of biological systems. Recently, these two directions have been 

converging. In this review, we argue that thinking computationally about biological processes may lead to more 

accurate models, which in turn can be used to improve the design of algorithms. We discuss the similar 

mechanisms and requirements shared by computational and biological processes and then present several 

recent studies that apply this joint analysis strategy to problems related to coordination, network analysis, and 

tracking and vision. We also discuss additional biological processes that can be studied in a similar manner and 

link them to potential computational problems. With the rapid accumulation of data detailing the inner workings 

of biological systems, we expect this direction of coupling biological and computational studies to greatly 

expand in the future. 
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I. INTRODUCTION  
Bio-inspired computing, short for biologically inspired computing, is a field of study that loosely knits 

together subfields related to the topics of connectionism, social behaviour and emergence. It is often closely 

related to the field of artificial intelligence, as many of its pursuits can be linked to machine learning. It relies 

heavily on the fields of biology, computer science and mathematics. Briefly put, it is the use of computers to 

model the living phenomena, and simultaneously the study of life to improve the usage of computers. 

Biologically inspired computing is a major subset of natural computation. 

Some areas of study encompassed under the canon of biologically inspired computing, and their biological 

counterparts: 

 genetic algorithms ↔ evolution 

 biodegradability prediction ↔ biodegradation 

 cellular automata ↔ life 

 emergent systems ↔ ants, termites, bees, wasps 

 neural networks ↔ the brain 

 artificial life ↔ life 

 artificial immune systems ↔ immune system 

 rendering (computer graphics) ↔ patterning and rendering of animal skins, bird feathers, mollusk 

shells and bacterial colonies 

 Lindenmayer systems ↔ plant structures 

 communication networks and protocols ↔ epidemiology and the spread of disease 

 membrane computers ↔ intra-membrane molecular processes in the living cell 

 excitable media ↔ forest fires, ―the wave‖, heart conditions, axons, etc. 

 sensor networks ↔ sensory organs 

 

Computer science and biology have enjoyed a long and fruitful relationship for decades. Biologists rely on 

computational methods to analyze and integrate large data sets, while several computational methods were 

inspired by the high level design principles of biological systems. Recently, these two directions have been 

converging. In this paper, we are checking the computationally about biological processes may lead to more 

accurate models, which in turn can be used to improve the design of algorithms. We discuss the similar 

mechanisms and requirements shared by computational and biological processes and then present several recent 

studies that apply this joint analysis strategy to problems related to coordination, network analysis, and tracking 

and vision and various other computational methodologies. We also discuss additional biological processes that 

can be studied in a similar manner and link them to potential computational problems. With the rapid 
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accumulation of data detailing the inner workings of biological systems, we expect this direction of coupling 

biological and computational studies to greatly expand in the future. 

Biologists have been increasingly relying on sophisticated computational methods, especially over the 

last two decades as molecular data have rapidly accumulated. Computational tools for searching large databases, 

including BLAST (Altschul et al, 1990), are now routinely used by experimentalists. Genome sequencing and 

assembly rely heavily on algorithms to speed up data accumulation and analysis (Gusfield, 1997; Trapnell and 

Salzberg, 2009; Schatzet al, 2010). Computational methods have also been developed for integrating various 

types of functional genomics data and using them to create models of regulatory networks and other interactions 

in the cell (Alon, 2006; Huttenhower et al, 2009; Myers et al, 2009). Indeed, several computational biology 

departments have been established over the last few years that are focused on developing additional 

computational methods to aid in solving life science‘s greatest mysteries. Computer scientists have also relied 

on biological systems for inspiration, especially when developing optimization methods (Table I). Early work 

on artificial intelligence in the 1960s leveraged ideas related to the activity of neurons in the brain to develop a 

class of computational methods known as neural networks (Hebb, 1949; Hopfield, 1982; Bishop, 1996), which 

have been used in many machine learning applications ranging from image segmentation to computing missile 

trajectories (Bishop, 1996). Other optimization techniques, such as genetic algorithms (Goldberg, 1989), were 

inspired by common operations in DNA sequence evolution and have been widely applied over the last 20 

years. Social insects (Dorigo et al, 2006) and particle swarms (Kennedy and Eberhart, 2002) have also 

motivated the study of how selforganization emerges from local interactions (Abelsonet al, 2000; Committee on 

Frontiers at the Interface of Computing, Biology, and National Research Council, 2005). These ideas have been 

applied extensively to multi-agent system optimization (Deneubourg et al, 1990; Ferber, 1999). A number of 

additional methods, including non-negative matrix factorization (Lee and Seung, 1999) and population protocols 

(Aspnes and Ruppert, 2009; Chazelle, 2009) have also capitalized on biological insights to derive new 

computing paradigms. While all of these methods have led to successful applications, they only relied on a high-

level (and sometimes flawed) understanding of the biological processes they were based on, and thus they 

usually did not directly lead to new biological insights. Similarly, though novel computational methods have 

been developed to help researchers learn new biology, the application of these methods to the biological 

problem (i.e., the biological system itself) rarely fed back to help computer scientists design better algorithms. 

Thus, the two directions— relying on biological ideas to develop computational methods and using 

computational methods to study biology—remained largely separated (Figure 1) 

 

 
Figure 1 Traditional studies versus computational thinking. (A) Traditionally, biologists leveraged computing 

power to analyze and process data (e.g., hierarchically clustering gene expression microarrays to predict protein 

function), and computer scientists used high-level design principles of biological systems to motivate new 

computational algorithms (e.g., neural networks). Rarely these two directions were coupled and mutually 

beneficial. (B) By thinking computationally about how biological systems process information (Nurse, 2008; 

Hogeweg, 2011), we can develop improved models and algorithms and provide a more coherent explanation of 

how and why the system operates as it does. 
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I.1. BIO-INSPIRED COMPUTING AND AI 

The way in which bio-inspired computing differs from the traditional artificial intelligence (AI) is in how it 

takes a more evolutionary approach to learning, as opposed to the what could be described as 'creationist' 

methods used in traditional AI. In traditional AI, intelligence is often programmed from above: the programmer 

is the creator, and makes something and imbues it with its intelligence. Bio-inspired computing, on the other 

hand, takes a more bottom-up, decentralised approach; bio-inspired techniques often involve the method of 

specifying a set of simple rules, a set of simple organisms which adhere to those rules, and a method of 

iteratively applying those rules. For example, training a virtual insect to navigate in an unknown terrain for 

finding food includes six simple rules. The insect is trained to 

 turn right for target-and-obstacle left; 

 turn left for target-and-obstacle right; 

 turn left for target-left-obstacle-right; 

 turn right for target-right-obstacle-left, 

 turn left for target-left without obstacle and 

 turn right for target right without obstacle. 

 

The virtual insect controlled by the trained spiking neural network can find food after training in any 

unknown terrain.[1]  After several generations of rule application it is usually the case that some forms of 

complex behavior arise. Complexity gets built upon complexity until the end result is something markedly 

complex, and quite often completely counterintuitive from what the original rules would be expected to produce 

(see complex systems). For this reason, in neural network models, it is necessary to accurately model an in vivo 

network, by live collection of ―noise‖ coefficients that can be used to refine statistical inference and 

extrapolation as system complexity increases. [2] 

 

Natural evolution is a good analogy to this method–the rules of evolution (selection, 

recombination/reproduction, mutation and more recently transposition) are in principle simple rules, yet over 

millions of years have produced remarkably complex organisms. A similar technique is used in genetic 

algorithms 

 

II. STRATEGIES EVOLVE BY NATURE 

II.1. Shared Principal of Computation 
There are many parallel requirements of computational and biological systems, which suggest that one can 

learn from the other (Figure 2). First, like virtually all large-scale computing platforms, biological systems are 

mostly distributed consisting of molecules, cells, or organisms that interact, coordinate, and make decisions 

without central control (Seeley, 2002; Babaogluet al, 2006; Figure 2A). Second, biological processes need to be 

able to successfully handle failures and attacks to thrive (Jeonget al, 2000; Kitano, 2004). Robustness is also a 

key property algorithm engineers covet when designing computing systems that persist in noisy environments. 

Third, networks serve as an important medium through which interactions occur and information propagates 

(Alon, 2006; Figure 2B). In both settings, the structure of these networks is often directly linked to the system‘s 

function. Fourth, biological systems are often modular; that is, they reuse certain components in multiple, and 

sometimes very different, applications. This is a key design principle in many programming languages and in 

large complex networks (Kashtan and Alon, 2005; Fortunato, 2010; Figure 2C). Fifth, biological processes are 

often stochastic (Kaernet al, 2005) resembling randomized algorithms whose power has been well documented 

for the design of approximation algorithms and whose use ranges from single process systems to large 

distributed systems (Motwani and Raghavan, 1996; Vazirani, 2004; Figure 2D) 

 

 
Figure 2(A) 
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Figure 2(B) 

 
Figure 2© 

 
Figure 2(D) 

II.2. Coordination 
Coordination is a major challenge for both computational and biological processes. At the molecular level, 

coordination is required to activate sets of genes that together respond to external conditions (Kauret al, 2010). 

At the cellular level, cells coordinate to determine cell fate during development (Afek et al, 2011) and to 

synchronize heart beats (Mirollo and Strogatz, 1990). Organisms, including the octopus, need to coordinate the 

activation of limbs (Sumbreet al, 2001), while shoals of fish coordinate to avoid predators (Wardet al, 2011). In 

computational systems, coordination is required for virtually all large-scale computing systems. Examples 

include search engines that coordinate thousands of back-end servers to quickly respond to user queries (Brin 

and Page, 1998), sensor networks that aggregate data when monitoring environments (Mainwaringet al, 2002; 

Werner-Allen et al, 2006), and mobile networks that synchronize data and schedules across multiple devices 

(Bernardet al, 2004). Below we discuss a few examples in detail.(Figure 3) 
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Figure 3: Coordination System 

 

III. ALGORITHM BASED ON BIO INSPIRED STRATEGIES  
The ideas from nature and biological activities have motivated the development of many sophisticated 

algorithms for problem-solving. These algorithms are broadly classified as evolutionary computation and swarm 

intelligence (SI) algorithms. Evolutionary computation is a term used to describe algorithms which were 

inspired by ‗survival of the fittest‘ or ‗natural selection‘  principles3; whereas ‗swarm intelligence‘ is a term 

used to describe the algorithms and distributed problems-solvers which were  inspired by the cooperative group 

intelligence of swarm or collective behaviour of insect colonies and other animal societies  

 

III.1. Evolutionary Algorithm 
Evolutionary algorithms (EAs) are computational methods inspired by the process and mechanisms of 

biological evolution. According to Darwin‘s natural selection theory of evolution, in nature the competition 

among individuals for scarce resources results in the fittest individuals dominating over the weaker ones (i.e. 

survival of the fittest). The process of evolution by means of natural selection helps to account for the variety of 

life and its suitability for the environment. The mechanisms of evolution describe how evolution actually takes 

place through the modification and propagation of genetic material (proteins). EAs share properties of 

adaptation through an iterative process that accumulates and amplifies beneficial variation through a trial and 

error process. Candidate solutions represent members of a virtual population striving to survive in an 

environment defined by a problem-specific objective function. In each case, the evolutionary process refines the 

adaptive fit of the population of candidate solutions in the environment, typically using surrogates for the 

mechanisms of evolution such as genetic recombination and mutation 

 

 Genetic algorithms 

In the field of artificial intelligence, a genetic algorithm (GA) is a search heuristic that mimics the 

process of natural selection. This heuristic (also sometimes called a metaheuristic) is routinely used to generate 

useful solutions to optimization and search problems.[1] Genetic algorithms belong to the larger class of 

evolutionary algorithms (EA), which generate solutions to optimization problems using techniques inspired by 

natural evolution, such as inheritance, mutation, selection, and crossover. 

 

The Canonical GA (pseudo code):  

 choose initial population 

 evaluate each individual's fitness 

 determine population's average fitness 

 repeat 

         select best-ranking individuals to reproduce 

         mate pairs at random 

         apply crossover operator 

         apply mutation operator 

         evaluate each individual's fitness 

         determine population's average fitness 

 until terminating condition (e.g. until at least one individual has  

          the desired fitness or enough generations have passed) 

 

 Differential evolution 

DE is a modern optimization technique in the family of EAs introduced by Storn and Price[x]. It was 

proposed as a variant of EAs to achieve the goals of robustness in optimization and faster convergence to a 



A Review on Bio-Inspired Computing Algorithms and Application 

National Conference on Recent Trends in Computer Science and Information Technology                      17 | Page 

(NCRTCSIT-2016) 

given problem. DE algorithm differs from other EAs in the mutation and recombination phases. Unlike GAs, 

where perturbation occurs in accordance with a random quantity, DE uses weighted differences between 

solution vectors to perturb the population.  

 A typical DE works as follows: after random initialization of the population (where the members are 

randomly generated to cover the entire search space uniformly), the objective functions are evaluated and the 

following steps are repeated until a termination condition is satisfied. At each generation, two operators, namely 

mutation and crossover are applied on each individual to produce a new population. In DE, mutation is the main 

operator, where each individual is updated using a weighted difference of a number of selected parent solutions; 

and crossover acts as background operator where crossover is performed on each of the decision variables with 

small probability. The offspring replaces the parentonly if it improves the fitness value; otherwise the parent is 

carried over to the new population. 

 

III.2. Swarm intelligence 
Swarm  intelligence (SI) is  artificial  intelligence based  on  the  collective  behavior of decentralized,  

self-organized systems. The  expression  was introduced  by  Gerardo  Beniand Jing Wang in 1989, in the 

context of cellular robotic systems. SI systems are typically made up of a population of simple agents interacting 

locally with one  another  and  with  their  environment.  The  agents  follow  very  simple  rules,  and although 

there is no centralized control structure dictating how individual agents should behave, local interactions 

between such agents lead to the emergence of complex global behavior.  Natural  examples  of  SI  include  ant  

colonies,  bird  flocking,  animal  herding, bacterial  growth,  and  fish  schooling. The  application  of  swarm  

principles  to  robots is called  swarm  robotics,  while  'swarm  intelligence'  refers  to  the  more  general  set  of 

algorithms. 

 
Figure 4: Example of swarm intelligence 

 

Swarm  intelligence  is  the  emergent  collective  intelligence  of  groups  of simple autonomous  agents.  Here,  

an  autonomous  agent  is  a  subsystem  that interacts  with  its environment, which probably consists of other 

agents, but acts relatively independently from all other agents. The autonomous agent does not follow 

commands from a leader, or some global  plan  .  For  example,  for  a  bird  to  participate  in  a  flock,  it  only  

adjusts  its movements to coordinate with the movements of its fock mates, typically its neighbors that are close 

to it in the fock. A bird in a flock simply tries to stay close to its neighbors, but avoid collisions with them. Each 

bird does not take commands from any leader bird since there is no lead bird. Any bird can be in the front, 

center and back of the swarm. Swarm behavior helps birds take advantage of several things including protection 

from predators  (especially  for  birds  in  the  middle  of  the   flock),  and  searching  for  food (essentially each 

bird is exploiting the eyes of every other bird). 

 

IV. IMPLEMENTATION OF BIOCOMPUTING AND APPLICATIONS 
Some of the techniques base on biocomputing has discussed below: 

IV1. Ant Colony Optimization 
Ant colony optimization (ACO) is a population-based metaheuristic that can be used to find approximate 

solutions to difficult optimization problems.  In ACO, a set of software agents called artificial ants search for 

good solutions to a given optimization problem. To apply ACO, the optimization problem is transformed into 

the problem of finding the best path on a weighted graph. The artificial ants (hereafter ants) incrementally build 

solutions by moving on the graph. The solution construction process is stochastic and is biased by a pheromone 

model, that is, a set of parameters associated with graph components (either nodes or edges) whose values are 

modified at runtime by the ants.  

IV2. Particle swarm optimization 
In computer science, particle swarm optimization (PSO) is a computational method that optimizes a 

problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. It solves 

a problem by having a population of candidate solutions, here dubbed particles, and moving these particles 
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around in the search-space according to simple mathematical formulae over the particle's position and velocity. 

Each particle's movement is influenced by its local best known position but, is also guided toward the best 

known positions in the search-space, which are updated as better positions are found by other particles. This is 

expected to move the swarm toward the best solutions. 

PSO is originally attributed to Kennedy, Eberhart and Shi[1][2] and was first intended for simulating social 

behaviour,[3] as a stylized representation of the movement of organisms in a bird flock or fish school. The 

algorithm was simplified and it was observed to be performing optimization. The book by Kennedy and 

Eberhart[4] describes many philosophical aspects of PSO and swarm intelligence. An extensive survey of PSO 

applications is made by Poli.[5][6] Recently, a comprehensive review on theoretical and experimental works on 

PSO has been published by Bonyadi and Michalewicz.[7] 

PSO is a metaheuristic as it makes few or no assumptions about the problem being optimized and can 

search very large spaces of candidate solutions. However, metaheuristics such as PSO do not guarantee an 

optimal solution is ever found. More specifically, PSO does not use the gradient of the problem being 

optimized, which means PSO does not require that the optimization problem be differentiable as is required by 

classic optimization methods such as gradient descent and quasi-newton methods. 

 

IV3. Stochastic Diffusion search  
Stochastic diffusion search (SDS) was first described in 1989 as a population-based, pattern-matching 

algorithm [Bishop, 1989]. It belongs to a family of swarm intelligence and naturally inspired search and 

optimisation algorithms which includes ant colony optimization, particle swarm optimization and genetic 

algorithms. Unlike stigmergetic communication employed in ant colony optimization, which is based on 

modification of the physical properties of a simulated environment, SDS uses a form of direct (one-to-one) 

communication between the agents similar to the tandem calling mechanism employed by one species of ants, 

Leptothorax acervorum. 

 

In SDS agents perform cheap, partial evaluations of a hypothesis (a candidate solution to the search 

problem). They then share information about hypotheses (diffusion of information) through direct one-to-one 

communication. As a result of the diffusion mechanism, high-quality solutions can be identified from clusters of 

agents with the same hypothesis. The operation of SDS is most easily understood by means of a simple analogy 

- The Restaurant Game. 

 

IV4. Cuckoo Search Algorithm  
Cuckoo Search Algorithm (CSA) [9] is based on the obligate brood parasitic behavior of some cuckoo 

species in combination with the Levy flight behavior of some birds and fruit flies.CSA is a new meta-heuristic 

approach that models the natural behavior of cuckoos. To describe the new CSA simplicity, the algorithm‘s 

idealized rules are summed up follows [9]:  

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. The best nest 

with high quality eggs (solutions) will be carried out over to the next generations.  

• The number of available host nests is fixed, say n, and the host can discover an alien egg by a 

probability Pa [0, 1].  

• The host bird can either throw the egg away or abandon the nest in order to build a completely 

new nest in a new location. 

 

IV5. Artificial Bee Colony Algorithm  
Artificial Bee Colony Optimization was proposed by Karaboga in 2005.In the artificial bee colony (ABC)  

algorithm [7], the colony of artificial bees comprises three groups of bees: employed bees, onlookers and scouts. 

A bee waiting on the dance area for making decision to choose a food source is called an onlooker and a bee 

going to the food source visited by itself previously is named an employed bee. A bee carrying out random 

search is called a scout. In the ABC algorithm, first half of the colony consists of employed artificial bees and 

the second half constitutes the onlookers. For every food source, there is only one employed bee. In other words, 

the number of employed bees is equal to the number of food sources around the hive. The employed bee whose 

food source is exhausted by the employed and onlooker bees becomes a scout. There are four phases[8] in ABC 

algorithm initialization phase, employed bees phase, onlooker bees‘ phase and scout bees phase. In initialization 

phase, from the search space the individuals are randomly selected. Mutation phase is added after the employed 

bee phase. The local search is done by employed bee phase. The local best position can be changed through 

mutation, and the algorithm may not be trapped into local optima. By sharing the information individuals can 

make use of others‘ advantage. For solving the job scheduling problem with the criterion to decrease the 

maximum completion time, crossover operator after the employed bee phase and mutation operator after 

onlooker bee phase of ABC algorithm are added.  
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V. CONCLUSION  
We have studied the basic of biocomputing and the associated evolve algorithms, practical 

implementations and their results and their application areas. It is found that biocomputing providing the very 

natural way to solve the problem as the human and lots of the animals in the nature. The biggest problems here 

are to implements and form the computational methodology by the machine. There will be a promising domain 

for the computer science development via this bridge opening the new techniques for better problem solving. In 

future we will focus on the practical implementation of these algorithms.  
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